How do you find #\int ( 13- x ) d x#?

1 Answer
Mar 3, 2018

#-1/2x^2+13x+C_1-C_2#, where #C_1# and #C_2# are constants.

Explanation:

Given: #int(13-x)dx#

We use the difference rule, which states that

#int(a-b)dx=inta \ dx-intb \ dx#

#=int13 \ dx-intx \ dx#

#=(13x+C_1)-(1/2x^2+C_2)#

#=13x-1/2x^2+C_1-C_2#