How do you find #int_-3^2 1/2(x+3)(x-2)?#

1 Answer
Mar 19, 2016

#int_(-3)^2 1/2(x+3)(x-2)dx=-125/12#

Explanation:

We will use the following:

  • #int_a^b(f+g) = int_a^bf + int_a^bg# for integrable functions #f# and #g#
  • #int_a^bcf = cint_a^bf# for an integrable function #f# and constant #c#
  • #int_a^bx^ndx = (b^(n+1)-a^(n+1))/(n+1)# for #n!=-1#

With those, we have:

#int_(-3)^2 1/2(x+3)(x-2)dx = 1/2int_(-3)^2(x+3)(x-2)dx#

#=1/2int_(-3)^2(x^2+x-6)dx#

#=1/2(int_(-3)^2x^2dx + int_(-3)^2x^1dx - 6int_(-3)^2x^0dx)#

#=1/2((2^3-(-3)^3)/3 + (2^2-(-3)^2)/2-(6(2-(-3)))/1)#

#=1/2(35/3 - 5/2 - 30)#

#=-125/12#