How do you find #\int ( \sqrt { x } + \root[ 7] { x } ) d x#?

1 Answer
May 23, 2017

#2/3x^(3/2)+7/8x^(8/7)+C#

Explanation:

firstly change the roots to power form

#int(sqrtx+root7x)dx#

#=int(x^(1/2)+x^(1/7))dx#

to integrate this we use the power rule for integration:

#int(x^n)dx=(x^(n+1)/(n+1))+C, n!=-1#

#=int(x^(1/2)+x^(1/7))dx=(x^(3/2)/(3/2))+(x^(8/7)/(8/7))+C#

we now tidy up.

#2/3x^(3/2)+7/8x^(8/7)+C#