How do you find #lim (sqrt(x^2+1)-1)/(sqrt(x+1)-1)# as #x->0# using l'Hospital's Rule or otherwise?

1 Answer
Jan 4, 2017

#0#

Explanation:

#(1+x^n)^m=1+m x^n+(m(m-1))/(2!)x^(2n)+cdots# so

#(1+x^n)^m = 1+m x^ng(x^n)# where

#g(x^n) = 1+(m-1)/(2!)x^n+((m-1)(m-2))/(3!)x^(2n)+ cdots#

In our case

# (sqrt(x^2+1)-1)/(sqrt(x+1)-1)equiv(1+1/2x^2 g(x^2)-1)/(1+1/2x g(x)-1) = (1/2x^2 g(x^2))/(1/2x g(x)) =xg(x^2)/(g(x))# so

#lim_(x->0) (sqrt(x^2+1)-1)/(sqrt(x+1)-1)=lim_(x->0) x g(x^2)/(g(x))# but #g(0)=1# so
#lim_(x->0) (sqrt(x^2+1)-1)/(sqrt(x+1)-1)=0#