Let us solve the Problem, using the following Standard Form :
#lim_(x to a) (x^n-a^n)/(x-a)=n*a^(n-1)," equivalently, "#
#lim_(x to a)(a^n-x^n)/(a-x)=n*a^(n-1)..............(star).#
We suppose,
#y=x^2-27," so that, as "x to -14, y to (-14)^2-27, or, y to 169.#
#:."The Reqd. Lim.="lim_(x to -14) (13-sqrt(x^2-27))/(x+14),#
#=lim_(y to 169)(169^(1/2)-y^(1/2))/(169-y)xx(169-y)/(x+14),#
#={1/2*169^(1/2-1)}{lim_(x to -14)(169-(x^2-27))/(x+14)}...[because,(star)],#
#={1/2*(13^2)^(-1/2)}{lim_(x to -14)(196-x^2)/(14+x)},#
#=(1/2*13^(-1)){-lim_(x to -14)(x^2-(-14)^2)/(x-(-14))},#
#=(1/2*1/13)(-2*(-14)^(2-1))............[because,(star)],#
#=1/2*1/13*(-2*(-14)).#
#rArr "The Reqd. Lim.=" 14/13,# as before!
Enjoy Maths.!