How do you find #\lim _ { x \rightarrow 2^ { - } } \frac { f ( x ) - f ( 2) } { x - 2}#?

1 Answer
Jun 20, 2017

There is not enough information to determine the limit.

Explanation:

Without knowing what the function is left of #2# and at #2#, we cannot give an answer. It could be anything or it might not exist.

Examples
Example 1
#f(x) = x^2#

#lim_(xrarr2^-) (f(x)-f(2))/(x-2) = lim_(xrarr2^-)(x^2-4)/(x-2) = lim_(xrarr2^-) (x+2) = 4#

Example 2

#f(x) = mx+b# for #m,b# constant

#lim_(xrarr2^-) (f(x)-f(2))/(x-2) = lim_(xrarr2^-)((mx+b)-(2m+b))/(x-2) = lim_(xrarr2^-) (m(x-2))/(x-2) = m#

Example 3

#f(x) = abs(x-2)#

#lim_(xrarr2^-) (f(x)-f(2))/(x-2) = lim_(xrarr2^-)(abs(x-2)-0)/(x-2) = lim_(xrarr2^-) (abs(x-2))/(x-2) = lim_(xrarr2^-)(-(x-2))/(x-2) = -1#

Example 4

#f(x) = {(x+3,"if",x < 2),(x,"if",x >= 2):}#

#lim_(xrarr2^-) (f(x)-f(2))/(x-2) = lim_(xrarr2^-)(x+3-2)/(x-2) = lim_(xrarr2^-) (x+1)/(x-2)# Does Not Exist because as #xrarr2^-#, the quotient decreases without bound.

(We write #lim_(xrarr2^-) (x+1)/(x-2) = -oo#)

These examples do not include all possibilities, but they should give an idea of why the information given is insufficient.