Without knowing what the function is left of #2# and at #2#, we cannot give an answer. It could be anything or it might not exist.
Examples
Example 1
#f(x) = x^2#
#lim_(xrarr2^-) (f(x)-f(2))/(x-2) = lim_(xrarr2^-)(x^2-4)/(x-2) = lim_(xrarr2^-) (x+2) = 4#
Example 2
#f(x) = mx+b# for #m,b# constant
#lim_(xrarr2^-) (f(x)-f(2))/(x-2) = lim_(xrarr2^-)((mx+b)-(2m+b))/(x-2) = lim_(xrarr2^-) (m(x-2))/(x-2) = m#
Example 3
#f(x) = abs(x-2)#
#lim_(xrarr2^-) (f(x)-f(2))/(x-2) = lim_(xrarr2^-)(abs(x-2)-0)/(x-2) = lim_(xrarr2^-) (abs(x-2))/(x-2) = lim_(xrarr2^-)(-(x-2))/(x-2) = -1#
Example 4
#f(x) = {(x+3,"if",x < 2),(x,"if",x >= 2):}#
#lim_(xrarr2^-) (f(x)-f(2))/(x-2) = lim_(xrarr2^-)(x+3-2)/(x-2) = lim_(xrarr2^-) (x+1)/(x-2)# Does Not Exist because as #xrarr2^-#, the quotient decreases without bound.
(We write #lim_(xrarr2^-) (x+1)/(x-2) = -oo#)
These examples do not include all possibilities, but they should give an idea of why the information given is insufficient.