How do you find #\lim _ { x \rightarrow - \frac { x } { 4} } \frac { \cos 2x } { \sin x + \cos x }#?

2 Answers
Jan 15, 2018

#lim_(x->-pi/4)cos(2x)/(sin(x)+cos(x))=sqrt2#

Explanation:

First investigate: Substitute #-pi/4# for #x#

Since:

#color(blue)(sin(-pi/4)=-sqrt2/2#

#color(blue)(cos(-pi/4)=sqrt2/2#

#lim_(x->-pi/4)cos(2x)/(sin(x)+cos(x))=0/(-sqrt2/2+sqrt2/2)=0/0#

We end up with the indeterminate form #0/0# which implies we should use L'Hospitals Rule

This rule states:

If, #lim_(x->a)f(x)/g(x)=0/0#

Then, #lim_(x->a)f(x)/g(x)=lim_(x->a)(f'(x))/(g'(x))#

So,

#lim_(x->-pi/4)cos(2x)/(sin(x)+cos(x))=lim_(x->-pi/4)(d/dx[cos(2x)])/(d/dx[(sin(x)+cos(x)]#

#=lim_(x->-pi/4)(-2sin(2x))/(cos(x)-sin(x))#

Substitute in #-pi/4# for #x#:

#=lim_(x->-pi/4)(-2sin(2(color(red)(-pi/4))))/(cos(color(red)(-pi/4))-sin(color(red)(-pi/4)))=(-2*-1)/(sqrt2/2-(-sqrt2/2))#

#=2/((2sqrt2)/2)=2/sqrt2#

Simplify by applying the exponent rule: #x^a/x^b=x^(a-b)#

#2/sqrt2=2^(1-1/2)=2^(1/2)=sqrt2#

Jan 15, 2018

Use #cos2x=cos^2x-sin^2x#, then factor and reduce.

Explanation:

#lim_(xrarr-pi/4)(cos2x)/(sinx+cosx) = lim_(xrarr-pi/4)(cos^2x-sin^2x)/(cosx+sinx)#

# = lim_(xrarr-pi/4)((cosx-sinx)(cosx+sinx))/(cosx+sinx) #

# = lim_(xrarr-pi/4)(cosx-sinx))#

# = cos(-pi/4) - sin(-pi/4)#

# = sqrt2/2-(-sqrt2/2) = sqrt2#