How do you find #\lim _ { x \rightarrow + \infty } \frac { x } { \ln ( 1+ 3x ^ { 2} ) }#?

1 Answer
Aug 22, 2017

I got that it tends to #oo#.

Explanation:

If we solve directly we should get the indeterminate form #oo/oo#.
However, we can use de L'Hospital Rule deriving separately top and bottom and THEN apply the limit:
#lim_(x->oo)1/(1/(1+3x^2)*6x)=lim_(x->oo)(1+3x^2)/(6x)#
Collect #x#:
#lim_(x->oo)(cancel(x)(1/x+3x))/(6cancel(x))=oo#
As when #x->oo# we have that #1/x->0#