How do you find #\lim _ { x \rightarrow \infty } \frac { x ( x + x ^ { 3} ) + 4x ^ { 4} } { 1- 2x ^ { 4} }#?

1 Answer
Nov 16, 2017

#lim_(xrarr oo) (x(x+x^3)+4x^4)/(1-2x^4)= color(blue)(-5/2)##

Explanation:

#lim_(xrarr oo) (x(x+x^3)+4x^4)/(1-2x^4)#

#color(white)("XXX")=lim_(xrarr oo) (x^2+5x^4)/(1-2x^4)#

...after dividing numerator and denominator by #x^4#
#color(white)("XXX")=lim_(xrarroo) ((x^2)/(x^4)+5)/(1/(x^4)-2#

#color(white)("XXX")=lim_(xrarroo) (1/(x^2)+5)/(1/(x^4)-2#

#color(white)("XXX")=(0+5)/(0-2)#

#color(white)("XXX")=-5/2#