How do you find #\lim _ { x \rightarrow + \infty } \sqrt { 16x ^ { 2} + 8x + 6} - \sqrt { 16x ^ { 2} - 8x - 6}#?
1 Answer
Jul 15, 2017
Please see below.
Explanation:
# = lim_(xrarroo) ((16x^2+8x+6)-(16x^2-8x-6))/(sqrt(16x^2+8x+6)+sqrt(16x^2-8x-6))#
# = lim_(xrarroo) (16x+12)/(sqrt(16x^2+8x+6)+sqrt(16x^2-8x-6))#
# = lim_(xrarroo) (x(16+12/x))/(sqrt(x^2)(sqrt(16+8/x+6/x^2)+sqrt(16-8/x-6/x^2))#
# = lim_(xrarroo) (x(16+12/x))/(abs(x)(sqrt(16+8/x+6/x^2)+sqrt(16-8/x-6/x^2))#
# = lim_(xrarroo) (16+12/x)/(sqrt(16+8/x+6/x^2)+sqrt(16-8/x-6/x^2)#
# = (16+0)/(sqrt(16+0+0)-sqrt(16+0+0)) = 16/8 = 2#
Bonus
For
So