How do you find the 3rd root of #-1+i#?

1 Answer
Jul 8, 2018

The solution is #{0.7937+i0.7937, -1.084+i0.2905, 0.2905-i1.084 }#

Explanation:

The complex number is

#z=-1+i#

And we need #z^(1/3)#

The polar form of #z# is

#z=|z|(costheta+isintheta)#

where,

#{(|z|=sqrt((-1)^2+(1)^2)),(costheta=-1/|z|),(sintheta=1/|z|):}#

#=>#, #{(|z|=sqrt2),(costheta=-1/sqrt2),(sintheta=1/sqrt2):}#

#=>#, #theta=3/4pi+2kpi#

Therefore,

#z=(sqrt2)^(1/3)(cos(3/4pi+2kpi)+isin(3/4pi+2kpi))#

So, By De Moivre's theorem

#z^(1/3)=(sqrt2)^(1/3)(cos(1/4pi+2/3kpi)+isin(1/4pi+2/3kpi))#

When

#k=0#, #=>#, #z_0=(sqrt2)^(1/3)(cos(1/4pi)+isin(1/4pi))#

#=(sqrt2)^(1/3)(1/sqrt2+i/sqrt2)#

#=2^(-1/3)+i2^(-1/3)#

#=0.7937+i0.7937#

#k=1#, #=>#, #z_1=(sqrt2)^(1/3)(cos(11/12pi)+isin(11/12pi))#

#=-1.084+i0.2905#

#k=2#, #=>#, #z_2=(sqrt2)^(1/3)(cos(19/12pi)+isin(19/12pi))#

#=0.2905-i1.084#

The solution is #{0.7937+i0.7937, -1.084+i0.2905, 0.2905-i1.084 }#