How do you find the antiderivative of #int (sin(sqrtx)) dx#?
1 Answer
Jan 26, 2017
Explanation:
#I=intsin(sqrtx)dx#
Let
Then:
#I=intsin(t)(2tdt)=int2tsin(t)dt#
Now we will use integration by parts. Let:
#{(u=2t,=>,du=2dt),(dv=sin(t)dt,=>,v=-cos(t)):}#
Then:
#I=uv-intvdu#
#I=-2tcos(t)-int(-cos(t))2dt#
#I=-2tcos(t)+2intcos(t)#
#I=-2tcos(t)+2sin(t)+C#
From
#I=-2sqrtxcos(sqrtx)+2sin(sqrtx)+C#