How do you find the area inside the oval limaçon #r=8+3costheta#?

1 Answer
Sep 23, 2017

# 137/2pi #

Explanation:

We have:

# r = 8+3cos theta#

Here is the graph of the curves. The shaded area, #A#, is the area of interest:
Steve M

And we calculate the area of the segment #A#, via Calculus using the polar form for area:

# A = int_alpha^beta 1/2r^2 \ d theta#

Thus:

# A = 1/2 \ int_0^(2pi) 1/2(8+3cos theta) \ d theta #
# \ \ = 1/2 \ int_0^(2pi) (64+48costheta+9cos^2theta ) \ d theta #
# \ \ = 1/2 \ int_0^(2pi) 64+48costheta+9/2(1+cos2theta ) \ d theta #
# \ \ = 1/4 \ int_0^(2pi) 128+96costheta+9(1+cos2theta ) \ d theta #
# \ \ = 1/4 \ int_0^(2pi) 137+96costheta+9cos2theta \ d theta #
# \ \ = 1/4 \ [137 theta+96sintheta+9/2sin2theta ]_0^(2pi) #
# \ \ = 1/4 \ {(274pi+0+0) - (0+0+0) #
# \ \ = 137/2pi #