How do you find the area inside the oval limaçon #r=8+3costheta#?
1 Answer
Sep 23, 2017
# 137/2pi #
Explanation:
We have:
# r = 8+3cos theta#
Here is the graph of the curves. The shaded area,
And we calculate the area of the segment
# A = int_alpha^beta 1/2r^2 \ d theta#
Thus:
# A = 1/2 \ int_0^(2pi) 1/2(8+3cos theta) \ d theta #
# \ \ = 1/2 \ int_0^(2pi) (64+48costheta+9cos^2theta ) \ d theta #
# \ \ = 1/2 \ int_0^(2pi) 64+48costheta+9/2(1+cos2theta ) \ d theta #
# \ \ = 1/4 \ int_0^(2pi) 128+96costheta+9(1+cos2theta ) \ d theta #
# \ \ = 1/4 \ int_0^(2pi) 137+96costheta+9cos2theta \ d theta #
# \ \ = 1/4 \ [137 theta+96sintheta+9/2sin2theta ]_0^(2pi) #
# \ \ = 1/4 \ {(274pi+0+0) - (0+0+0) #
# \ \ = 137/2pi #