How do you find the asymptotes for # f(x)= (x-3 )/( 2x-1)#?

1 Answer
Jan 14, 2016

Horizontal asymptote: #f(x)=1/2#
Vertical asymptote: # x=-1/2#
There is no oblique asymptote.

Explanation:

Horizontal asymptote
#f(x)=(x-3)/(2x-1)#

#color(white)("XXX")=x/(2x-1)-3/(2x-1)#

#color(white)("XXX")=1/(2-1/x) -3/(2x-1)#

#lim_(xrarr+-oo) f(x) = 1/(2-0)-0 = 1/2#

Vertical asymptote
As #xrarr(1/2)^+#
#color(white)("XXX")(2x-1)rarr +0#
As #xrarr(1/2)^-#
#color(white)("XXX")(2x-1)rarr -0#

When #(2x-1)rarr 0#
#color(white)("XXX")f(x)=(x-3)/(2x-1) rarr +_oo#

Therefore #x=1/2# is a vertical asymptote

Oblique asymptote
When a function is defined as a polynomial divided by another polynomial
an oblique asymptote exists if and only if
#color(white)("XXX")#the degree of the numerator is greater than the degree of the denominator.

graph{(x-3)/(2x-1) [-12.21, 13.09, -5.02, 7.64]}