How do you find the binomial coefficient of #((100), (2))#? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer Narad T. Nov 28, 2017 The answer is #=4950# Explanation: Apply #((n),(k))=(n!)/((n-k)!k!)# where #n! =nxx(n-1)xx(n-2)xx.......3xx2xx1# Therefore, #((100),(2))=(100!)/((100-2)!(2!))# #=(100!)/(98!xx2!)# #=(100*99)/(1*2)# #=50*99# #=4950# Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 4096 views around the world You can reuse this answer Creative Commons License