How do you find the component form and magnitude of the vector v given initial point (1,11) and terminal point (9,3)?
1 Answer
Aug 18, 2017
# bb(ul v) = ( (8), (-8) ) = << 8, -8 >> = 8bb(ul hat i) - 8bb(ul hat j)#
# || bb(ul v) || = 8sqrt(2) #
Explanation:
Denote the given coordinates by:
# O= (0,0) #
# A = (1,11) #
# B = (9,3) #
Then the vector
# bb(ul v) = bb(vec(OB)) - bb(vec(OA)) #
# \ \ \ = ( (9), (3) ) - ( (1), (11) )#
# \ \ \ = ( (8), (-8) )#
Alternatively, depending upon the desired notation we can also write:
# bb(ul v) = << 8, -8 >> = 8bb(ul hat i) - 8bb(ul hat j)#
And we can calculate the magnitude, using the metric norm:
# || bb(ul v) || = sqrt((8)^2 + (-8)^2 ) #
# " " = sqrt(64+64) #
# " " = sqrt(128) #
# " " = 8sqrt(2) #