How do you find the definite integral for: #dx /(a cos^2x + b sin^2 x)^2# for the intervals #[0, pi]#?

1 Answer
Jun 4, 2018

Assuming #a# and #b# are positive real numbers, use the substitution #sqrtbtanx=sqrtatantheta#.

Explanation:

Let

#I=int_0^pidx/(acos^2x+bsin^2x)^2#

From symmetry of the squared functions:

#I=2int_0^(pi/2)dx/(acos^2x+bsin^2x)^2#

Multiply numerator and denominator by #sec^4x#:

#I=2int_0^(pi/2)(sec^4x)/(a+btan^2x)^2dx#

Assuming #a# and #b# are positive real numbers, apply the substitution #sqrtbtanx=sqrtatantheta#:

#I=2/(ab)^(3/2)int_0^(pi/2)(b+atan^2theta)/sec^2thetad theta#

Simplify:

#I=2/(ab)^(3/2)int_0^(pi/2)(bcos^2theta+asin^2theta)d theta#

Apply the double-angle formula for #cos2theta#:

#I=1/(ab)^(3/2)int_0^(pi/2){(a+b)-(a-b)cos2theta}d theta#

Integrate directly:

#I=1/(ab)^(3/2)[(a+b)theta-1/2(a-b)sin2theta]_0^(pi/2)#

Hence:

#I=(a+b)/(ab)^(3/2)pi/2#