How do you find the definite integral of #(3x^3 +7) dx # from #[1, 5]#?
1 Answer
Jun 26, 2016
496
Explanation:
#color(red)(|bar(ul(color(white)(a/a)color(black)(int_a^bf(x)dx=[F(x)]_a^b=F(b)-F(a))color(white)(a/a)|)))# Integrate each term using the
#color(blue)"power rule"#
#int(ax^n)dx=a/(n+1)x^(n+1)#
#rArrint_1^5(3x^3+7)dx=[3/4x^4+7x]_1^5#
#=(3/4(5)^4+7(5))-(3/4(1)^4+7(1))#
#=1875/4+35-3/4-7=1872/4+28=496#