How do you find the definite integral of #int 3sqrt(1+x^(-1))dx# from #[0,3]#?

1 Answer
Jun 10, 2018

#3/2(4sqrt(3)-log(2/sqrt(3)-1)+log(1+2/sqrt(3)))#

Explanation:

Writing the integrand in the form
#3int_0^3sqrt((x+1)/x)dx#
#u=(x+1)/x# #du=(1/x-(x+1)/x^2)dx#
then we get
#-3int_infty^(4/3)sqrt(u)/(1-u)^2du#
#3int_(4/3)^inftysqrt(u)/(1-u)^2du#

substituting #s=sqrt(u),ds=1/(2*sqrt(u))du#
so

#6*int_(2/sqrt(3))^infty s^2/(1-s^2)^2ds#

#6int_(2sqrt(3))^infty -1/(4(s+1))+1/(4*(s-1)^2)+1/(4(s-1))+1/(4(s-1)^2)ds#

#lim_(b to infty)3/2(-2s(s^2+1)+log(1-s)-log(1+s))_(2/sqrt(3))^infty#
and this gives

#3/2*(4sqrt(3)-log(2/sqrt(3)-1)+log(1+2/sqrt(3))#