How do you find the definite integral of #(x^3)/sqrt(16 - x^2)# in the interval #[0, 2sqrt3]#?

3 Answers
Jun 1, 2018

# 40/3#.

Explanation:

Let, #I=int_0^(2sqrt3)x^3/sqrt(16-x^2)dx#.

We subst. #16-x^2=t^2. :. x^2=16-t^2#.

#:. 2xdx=-2tdt, or, xdx=-tdt#.

Also, when #x=0, t=4, &, x=2sqrt3, t=2#.

#:. I=int_0^(2sqrt3)x^3/sqrt(16-x^2)dx#,

#=int_0^(2sqrt3)x^2/sqrt(16-x^2)xdx#,

#=int_4^2(16-t^2)/sqrt(t^2)(-tdt)#,

#=int_4^2(t^2-16)dt#,

#=[t^3/3-16t]_4^2#,

#=[{8/3-32}-{64/3-64}]#,

#=32-56/3#.

# rArr I=40/3#, as desired!

Jun 1, 2018

#I=40/3#

Explanation:

Here,

#I=int_0^(2sqrt3) x^3/sqrt(16-x^2)dx#

Subst. #x=4sinu=>dx=4cosudu#

#x=0=>4sinu=0=>sinu=0=>u=0#

#x=2sqrt3=>4sinu=2sqrt3=>sinu=sqrt3/2=>u=pi/3#

So,

#I=int_0^(pi/3)(64sin^3u)/sqrt(16-16sin^2u)xx4cosudu#

#=int_0^(pi/3)(64sin^3u)/(4cosu)xx4cosudu#

#=int_0^(pi/3)64sin^3udu#

#=16int_0^(pi/3) color(red)(4sin^3u)du#

#=16int_0^(pi/3)color(red)((3sinu-sin3u))du#

#=16[-3cosu+(cos3u)/3]_0^(pi/3)#

#=16{[-3(1/2)+(-1)/3]-[-3(1)+1/3]}#

#=16{-3/2-1/3+3-1/3}#

#=16{3-3/2-1/3-1/3}#

#=16{(18-9-2-2)/6}#

#=16xx5/6#

#=8xx5/3#

#=40/3#

NOTE :

#color(red)(sin3theta=3sintheta-4sin^3theta#

#color(red)(4sin^3theta=3sintheta-sin3theta#

Jun 1, 2018

Make a trig substitution to simplify the denominator, then evaluate as normal

Explanation:

Note first that the function has two values at which it blows up, so can't be integrated over: #x=+-4#. The given limits of integration lie between these values, so this is no problem.

Substitute #x=4sin theta# to turn the denominator into a simple trig function via the identity #sin^2 theta +cos^2 theta=1#. Note that #(dx)/(d theta)=4 cos theta# and that the limits of integration #x=0,2sqrt(3)# are equivalent to #theta=0,pi/3#.
(Recall that #sin (pi/3) = sqrt(3)/2#)

#int_0^(2sqrt(3)) x^3/sqrt(16-x^2)dx=int_0^(pi/3) (64sin^3theta)/sqrt(16-16sin^2theta)*4cos theta d theta#

Simplify:
#64int_0^(pi/3) sin^3theta d theta#

Use the same identity to rewrite this as
#64int_0^(pi/3) (1-cos^2theta)sin theta d theta=64int_0^(pi/3) sin theta-sin theta cos^2theta d theta#

This integrates readily as
#64[-cos theta+1/3cos^3theta)]_(theta=0)^(pi/3)#

The limits of integration give us now
#64[(-1/2+1/3*1/8)-(-1+1/3*1)]#
#=40/3#