Formula for finding derivative of arctangent
#d/dx(tan^-1 u)=(1/(1+u^2))d/dx(u)#
#d/dx(tan^-1 sqrt((1-x)/(1+x)))=(1/(1+(sqrt((1-x)/(1+x)))^2))d/dx(sqrt((1-x)/(1+x)))#
#d/dx(tan^-1 sqrt((1-x)/(1+x)))=#
#(1/(1+(1-x)/(1+x)))(1/(2(sqrt((1-x)/(1+x)))))*d/dx((1-x)/(1+x))#
#d/dx(tan^-1 sqrt((1-x)/(1+x)))=#
#(1/(1+(1-x)/(1+x)))(1/(2(sqrt((1-x)/(1+x)))))*(((1+x)(-1)-(1-x)(1))/(1+x)^2)#
Simplify
#d/dx(tan^-1 sqrt((1-x)/(1+x)))=#
#((1+x)/(1+x+1-x))(1/2*sqrt((1+x)/(1-x)))*((-1-x-1+x)/(1+x)^2)#
#d/dx(tan^-1 sqrt((1-x)/(1+x)))=#
#((1+x)/(2))(1/2*sqrt((1+x)/(1-x)))*((-2)/(1+x)^2)#
#d/dx(tan^-1 sqrt((1-x)/(1+x)))=#
#(1/2*sqrt((1+x)/(1-x)))*((-1)/(1+x))#
#d/dx(tan^-1 sqrt((1-x)/(1+x)))=#
#(1/2*sqrt(((1+x)/(1-x))((1-x)/(1-x))))*((-1)/(1+x))#
#d/dx(tan^-1 sqrt((1-x)/(1+x)))=-1/2*(sqrt(1-x^2))/((1-x^2))#
God bless....I hope the explanation is useful.