How do you find the derivative of #f(x)=3((arcsinx)^2)#?
1 Answer
Apr 28, 2018
Explanation:
#•color(white)(x)d/dx(arcsinx)=1/(sqrt(1-x^2))#
#"differentiate using the "color(blue)"chain rule"#
#"Given "f(x)=g(h(x))" then"#
#f'(x)=g'(h(x))xxh'(x)#
#rArrf'(x)=3[2arcsinx xxd/dx(arcsinx)]#
#color(white)(rArrf'(x))=3(2arcsinx xx1/(sqrt(1-x^2)))#
#color(white)(rArrf'(x))=(6arcsinx)/(sqrt(1-x^2))#