How do you find the derivative of #f(x)=log_2(x^2/(x-1))#?

1 Answer
Feb 18, 2017

#f'(x)=(x-2)/(x(x-1)(ln(2)))#

Explanation:

We need to know the logarithm rules:

  • #log_a(b/c)=log_a(b)-log_a(c)#
  • #log_a(b^c)=clog_a(b)#
  • #log_a(b)=log_c(b)/log_c(a)=ln(b)/ln(a)#

We also have to know that:

  • #d/dx(ln(x))=1/x#
  • #d/dxln(f(x))=1/f(x)*f'(x)#

Then:

#f(x)=log_2(x^2)-log_2(x-1)#

#f(x)=ln(x^2)/ln(2)-ln(x-1)/ln(2)#

#f(x)=1/ln(2)(2ln(x)-ln(x-1))#

The derivative is then:

#f'(x)=1/ln(2)(2(1/x)-1/(x-1)(x-1)')#

#f'(x)=1/ln(2)(2/x-1/(x-1))#

Which can be simplified:

#f'(x)=1/ln(2)((2(x-1)-x)/(x(x-1)))#

#f'(x)=(x-2)/(x(x-1)(ln(2)))#