How do you find the derivative of #g(t) = t sqrt(4-t)#?

1 Answer
Mar 21, 2018

#g'(t)=(8-3t)/(2sqrt(4-t))#

Explanation:

#"differentiate using "color(blue)"product/chain rules"#

#"Given "g(t)=f(t)h(t)" then"#

#g'(t)=f(t)h'(t)+h(t)f'(t)larrcolor(blue)"product rule"#

#"Given "y=f(g(x))" then"#

#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#

#f(t)=trArrf'(t)=1#

#h(t)=(4-t)^(1/2)#

#rArrh'(t)=1/2(4-t)^(-1/2)(-1)=-1/2(4-t)^(-1/2)#

#rArrg'(t)=-1/2t(4-t)^(-1/2)+(4-t)^(1/2)#

#color(white)(rArrg'(t))=(4-t)^(-1/2)(-1/2t+4-t)#

#color(white)(rArrg'(t))=(4-t)^(-1/2)(4-3/2t)#

#color(white)(rArrg'(t))=(8-3t)/(2sqrt(4-t))#