How do you find the derivative of #G(x) = (4-cos(x))/(4+cos(x))#?

1 Answer
Sep 12, 2016

#(8sinx)/(4+cosx)^2#

Explanation:

The derivative of the quotient is defined as follows:
#(u/v)'=(u'v-v'u)/v^2#

Let #u=4-cosx# and #v=4+cosx#

Knowing that #color(blue)((d(cosx))/dx=-sinx)#

Let us find #u'# and #v'#

#u'=(4-cosx)'=0-color(blue)((-sinx))=sinx#
#v'=(4+cosx)'=0+color(blue)((-sinx))=-sinx#

#G'(x)=(u'v-v'u)/v^2#
#G'(x)= (sinx(4+cosx)-(-sinx)(4-cosx))/(4+cosx)^2#
#G'(x)=(4sinx+sinxcosx+4sinx-sinxcosx)/(4+cosx)^2#
#G'(x)=(8sinx)/(4+cosx)^2#