How do you find the derivative of Inverse trig function #f(x) = arcsin (9x) + arccos (9x)#?
1 Answer
Jun 21, 2015
Here'/ the way I do this is:
- I'll let some
-
So i get,
#" "sintheta=9x" "# and#" "cosalpha=9x# -
I differentiate both implicitly like this:
#=>(costheta)(d(theta))/(dx)=9" "=>(d(theta))/(dx)=9/(costheta)=9/(sqrt(1-sin^2theta))=9/(sqrt(1-(9x)^2)#
-- Next, I differentiate
-
Overall,
#" "f(x)=theta+alpha# -
So,
#f^('')(x)=(d(theta))/(dx)+(d(alpha))/(dx)=9/sqrt(1-(9x)^2)-9/sqrt(1-(9x)^2)=0#