How do you find the derivative of #ln((tan^2)x)#?
1 Answer
Explanation:
Method 1 - No simplification
#y=ln(tan^2x)#
Note that
#dy/dx=1/tan^2x*d/dxtan^2x#
And we need to use the chain rule again since we have a function squared:
#dy/dx=1/tan^2x * 2tanx * d/dxtanx#
#dy/dx=1/tan^2x * 2tanx * sec^2x#
#dy/dx=cos^2x/sin^2x * (2sinx)/cosx * 1/cos^2x#
#dy/dx=2/(sinxcosx)#
#dy/dx=2secxcscx#
Method 2 - Simplification
Use the logarithm rules:
#ln(a^b)=bln(a)# #ln(a//b)=ln(a)-ln(b)#
Then:
#y=ln(tan^2x)#
#y=ln(sin^2x/cos^2x)#
#y=ln(sin^2x)-ln(cos^2x)#
#y=2ln(sinx)-2ln(cosx)#
Then differentiating becomes easier:
#dy/dx=2* 1/sinx * d/dxsinx-2 * 1/cosx * d/dxcosx#
#dy/dx=2(cosx/sinx+sinx/cosx)#
#dy/dx=(2(cos^2x+sin^2x))/(sinxcosx)#
#dy/dx=2/(sinxcosx)#
#dy/dx=2secxcscx#