How do you find the derivative of #ln((tan^2)x)#?

1 Answer
Aug 16, 2017

#2cotx+2tanx# or #2secxcscx#, depending on preferred simplification

Explanation:

#" "#

Method 1 - No simplification

#y=ln(tan^2x)#

Note that #d/dxln(x)=1/x#, so by the chain rule #d/dxln(u)=1/u*(du)/dx#. Then:

#dy/dx=1/tan^2x*d/dxtan^2x#

And we need to use the chain rule again since we have a function squared:

#dy/dx=1/tan^2x * 2tanx * d/dxtanx#

#dy/dx=1/tan^2x * 2tanx * sec^2x#

#dy/dx=cos^2x/sin^2x * (2sinx)/cosx * 1/cos^2x#

#dy/dx=2/(sinxcosx)#

#dy/dx=2secxcscx#

Method 2 - Simplification

Use the logarithm rules:

  • #ln(a^b)=bln(a)#
  • #ln(a//b)=ln(a)-ln(b)#

Then:

#y=ln(tan^2x)#

#y=ln(sin^2x/cos^2x)#

#y=ln(sin^2x)-ln(cos^2x)#

#y=2ln(sinx)-2ln(cosx)#

Then differentiating becomes easier:

#dy/dx=2* 1/sinx * d/dxsinx-2 * 1/cosx * d/dxcosx#

#dy/dx=2(cosx/sinx+sinx/cosx)#

#dy/dx=(2(cos^2x+sin^2x))/(sinxcosx)#

#dy/dx=2/(sinxcosx)#

#dy/dx=2secxcscx#