How do you find the derivative of the function: #[ln(2-3x)/lnx]^[arccos(2-5x)]#?

1 Answer
Dec 30, 2016

See explanation.

Explanation:

For this function to be real,

#x>0, 2-3x>0 and -1<=2-5x<=1#

compounding,

all inclusive #1/5<=x<=3/5.

And, for this range, the two lagarithms are negative, and therefore,

the ratio is positive.

Let #y =(ln(2-3x)/ln x)^(arc cos (2-5x))#.

#ln y =arc cos(2-5x)(ln ln(2-3x)-ln ln x)#. Differentiating,

#1/yy'=(arc cos (2-5x) )#

#(((-3))/(ln(2-3x)(2-3x))-1/((ln x)(x)))#

#-(-((-5))/sqrt(1-(2-5x)^2)))(ln ln (2-3x)-ln ln x)#

#y'=-(ln(2-3x)/ln x)^(arc cos (2-5x))#

#(arc cos (2-5x)#

#(3/(ln(2-3x)(2-3x))+1/((ln x)(x)))#

#+(5)/sqrt(1-(2-5x)^2)(ln ln (2-3x)-ln ln x)), 1/5<=x<=3/5#