How do you find the derivative of the function #R=3W^(2*pi)# at #W=7#?

1 Answer
Feb 13, 2018

# [(dR)/(dW)]_(W=7) = (6pi)/7 * 7^(2pi#

Explanation:

We have:

# R=3W^(2pi) #

If we differentiate #R# wrt #W# using the power rule, we get:

# (dR)/(dW) = 3(2pi)W^(2pi-1) #
# \ \ \ \ \ \ \ = 6pi \ W^(2pi-1) #

So when #W=7# we have:

# [(dR)/(dW)]_(W=7) = 6pi (7^(2pi-1)) #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (6pi)/7 * 7^(2pi#