How do you find the derivative of the function: #sqrt(1-9x^2)arccos(3x)#?

1 Answer
Jul 21, 2017

#y=sqrt(1-9x^2)arccos(3x)#

Let #" "3x=costheta#

So Differentiating w r to x we have #" " 3=-sintheta(d theta)/(dx)#

#=>(d theta)/(dx)=-3/sintheta#

Now

#y=sqrt(1-9x^2)arccos(3x)#

#=>y=sqrt(1-cos^2theta)arccos(costheta)#

#=>y=thetasintheta#

Differentiating w r to #theta# we have

#(dy)/(d theta)=thetacostheta+sintheta#

So

#(dy)/(dx)=(dy)/(d theta)xx(d theta)/(dx)#

#=>(dy)/(dx)=(thetacostheta+sintheta)xx(-3/sintheta)#

#=>(dy)/(dx)=(-3thetacostheta/sintheta-3)#

#=>(dy)/(dx)=-3((thetacostheta)/sqrt(1-cos^2theta)+1)#

#=>(dy)/(dx)=-3((3xcos^-1(3x))/sqrt(1-9x^2)+1)#