How do you find the derivative of the function: #y=arccos(1/x)#?
1 Answer
Nov 8, 2016
# dy/dx = 1/(sqrt(1 - 1/x^2)x^2) #
Explanation:
We can write
We can then differentiate implicitly:
# -siny(dy/dx) = -x^-2 #
# siny(dy/dx) = 1/x^2 #
Using the identity
# sin^2y + (1/x)^2 = 1 #
# :. sin^2y = 1 - 1/x^2 #
# siny = sqrt(1 - 1/x^2) #
And substituting this we have:
# sqrt(1 - 1/x^2)(dy/dx) = 1/x^2 #
# :. dy/dx = 1/(sqrt(1 - 1/x^2)x^2) #