How do you find the derivative of the function: #y = arccos[e^(2x)]#?
1 Answer
Jan 20, 2016
Explanation:
Using the arccosine formula in conjunction with the chain rule:
#d/dx[arccos(u)]=-(u')/sqrt(1-u^2)#
Thus,
#y'=-(d/dx[e^(2x)])/sqrt(1-(e^(2x))^2)=-(2e^(2x))/sqrt(1-e^(4x))#