How do you find the derivative of the function: #y = arcsin(x^5)#?
1 Answer
Feb 24, 2016
Explanation:
Use the chain rule . To do this, you must first know that
#d/dxarcsin(x)=1/sqrt(1-x^2)#
Thus,
#d/dxarcsin(f(x))=1/sqrt(1-(f(x))^2)*f'(x)#
So, for
#dy/dx=d/dxarcsin(x^5)=1/sqrt(1-(x^5)^2)*d/dx(x^5)#
#dy/dx=(5x^4)/sqrt(1-x^10)#