How do you find the derivative of #x^(sinx)#?
1 Answer
Nov 17, 2016
# d/dx x^sinx= x^sinx((sinx)/x -cosxlnx) #
Explanation:
Let
Then
# :. lny = (sinx)lnx #
Differentiating implicitly and applying the product rule:
# 1/ydy/dx=(sinx)(1/x) + (-cosx)(lnx) #
# 1/ydy/dx=(sinx)/x -cosxlnx #
# dy/dx=y((sinx)/x -cosxlnx) #
# dy/dx=x^sinx((sinx)/x -cosxlnx) #