How do you find the derivative of #x^(sinx)#?

1 Answer
Nov 17, 2016

# d/dx x^sinx= x^sinx((sinx)/x -cosxlnx) #

Explanation:

Let # y = x^sinx #

Then # ln y = ln(x^sinx) #

# :. lny = (sinx)lnx #

Differentiating implicitly and applying the product rule:

# 1/ydy/dx=(sinx)(1/x) + (-cosx)(lnx) #
# 1/ydy/dx=(sinx)/x -cosxlnx #
# dy/dx=y((sinx)/x -cosxlnx) #
# dy/dx=x^sinx((sinx)/x -cosxlnx) #