How do you find the derivative of #y = 2x cos(x)#?
1 Answer
Jan 17, 2016
Explanation:
Use the product rule:
#d/dx[f(x)g(x)]=f'(x)g(x)+f(x)g'(x)#
Thus,
#y'=cos(x)d/dx[2x]+2xd/dx[cos(x)]#
#y'=2cos(x)+2x(-sinx)#
#y'=2(cos(x)-xsin(x))#