How do you Find the derivative of #y=arctan((1-x)/(1+x) )#?

1 Answer
Sep 12, 2014

Let us find the derivative of #{1-x}/{1+x}#.

By Quotient Rule,
#({1-x}/{1+x})'={-1cdot(1+x)-(1-x)cdot1}/{(1+x)^2}={-2}/(1+x)^2#

By Chain Rule,
#y'=1/{1+({1-x}/{1+x})^2}cdot{-2}/(1+x)^2#

by multiplying the quotients together,
#={-2}/{(1+x)^2+(1-x)^2}#

by simplifying the denominator
#={-2}/{2(1+x^2)}#

by cancelling out 2's,
#=-{1}/{1+x^2}#