How do you find the derivative of #y=sin^2x/cosx#?
2 Answers
Jan 5, 2016
Explanation:
Use the quotient rule, which states that for a function
#y'=(f'(x)g(x)-g'(x)f(x))/(g(x))^2#
We have:
#f(x)=sin^2x#
#g(x)=cosx#
To find
#f'(x)=2sinxcosx#
#g'(x)=-sinx#
Plug these into the quotient rule equation.
#y'=(2sinxcosx(cosx)-(-sinx)sin^2x)/(cos^2x)#
#y'=(2cos^2xsinx+sin^3x)/cos^2x#
This alternatively can be simplified as
#y'=sin^3x/cos^2x+2sinx#
Explanation:
Note that
Therefore,
Using the Chain Rule,