How do you find the domain of #f( x ) = \frac { x ^ { 2} - x - 12} { x ^ { 2} + 7x - 18}#?

1 Answer
Jun 29, 2017

Domain: # x in RR# except #(x = -9 or x = 2)#. In interval notation: # (-oo, -9) uu (-9 ,2) uu (2,oo)#

Explanation:

#f(x)=(x^2-x-12)/(x^2+7x-18) or f(x) = ((x-4)(x+3))/((x+9)(x-2))#

Domain : Input restriction is denominator should not be #0# or

#x+9 != 0 or x != -9 and x-2 !=0 or x != 2#

Domain: # x in RR# except #(x = -9 or x = 2)#. In interval notation:

# (-oo, -9) uu (-9 ,2) uu (2,oo)#

graph{(x^2-x-12)/(x^2+7x-18) [-40, 40, -20, 20]} [Ans]