How do you find the equation of the line tangent to the graph of #y= 1/ (1+x^2)# at the point (2, 0.2)?

1 Answer
Aug 6, 2015

I found: #y=-4/25x+13/25#

Explanation:

I would start by fnding the slope of the tangent evaluating the derivative of the function at #x=2#:
#y'=(-2x)/(1+x^2)^2#
at #x=2#
#y'(2)=-4/(5^2)=-4/25# which is the slope #m# of the tangent.
So the equation can be found using:
#y-y_0=m(x-x_0)#
#y-0.2=-4/25(x-2)#
#y-2/10=-4/25(x-2)#
#y-1/5=-4/25(x-2)#
#y=1/5-4/25x+8/25#
#y=-4/25x+13/25#

Graphically:
enter image source here