How do you find the equation of the line tangent to #y=4x^3+12x^2+9x+7# at (-3/2,7)?

1 Answer
Jan 18, 2016

#y=7#

Explanation:

The slope (gradient) of the line is the rate of change in y for the rate of change in x

So we have #" "("change in y")/("change in x") =(dy)/(dx)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Let the gradient of the line be #m#
Let any point on the line be P

Given: #" "y=4x^3+12x^2+9x+7#

From this:#" "m=(dy)/(dx) = 12x^2+ 24x+9#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

At the point #(x,y)->(-3/2,7)#

#m=(dy)/(dx)=12(-3/2)^2+24(-3/2)+9 #

#m= +27-36+9 = 0 #
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So the equation of the tangent is#" " y=(0)x+c#

This tangential line passes through the point #P_(-3/2,7)#

So we have:

#7=(0)(-3/2)+c#

#c=7#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So the equation of the tangent at #P_(-3/2,7)#

is: #" "y=+7#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Tony B