How do you find the equation of the tangent line to the curve #y=2secx# at x =pi/4?

1 Answer
Jul 13, 2018

#y=sqrt(2)x+2sqrt(2)-sqrt(2)/2*pi#

Explanation:

The searched Tangent line has the equation

#y=mx+n#
to get we compute #f'(x)#

#f'(x)=2sec(x)tan(x)#

so we get

#f'(pi/4)=2sec(pi/4)tan(pi/4)=2sqrt(2)#
thus #m=2sqrt(2)#
To get the Point we Substitute #x=pi/4# in our function:

#f(pi/4)=2sec(pi/4)=2sqrt(2)#

so we have

#2sqrt(2)=2sqrt(2)+n#

#n=2sqrt(2)-sqrt(2)/2pi#

so the equation of our line is given by

#y=2sqrt(2)x+2sqrt(2)-sqrt(2)/2pi#