How do you find the equation of the tangent line to the curve #y=secx# at #(pi/3,2)#?
1 Answer
May 22, 2017
Explanation:
The equation for the tangent line at the point
#y = f'(x_1)(x-x_1)+f(x_1)#
(This is really just the point-slope form of a line in disguise!)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The problem gives us that
#f'(x)=d/dxsecx=secxtanx#
#therefore f'(pi/3)=sec(pi/3)tan(pi/3)=2*sqrt3#
Now, we need to just plug in all of these values to give us the tangent line equation:
#y = f'(x_1)(x-x_1)+f(x_1)#
#y = 2sqrt3(x-pi/3)+2#
Or if the problem prefers slope intercept form:
#y=2sqrt3x-(2pisqrt3)/3+2#