How do you find the first and second derivative of #1/lnx#?

1 Answer
Feb 23, 2015

For the first derivative start by rewriting

#1/lnx=(lnx)^-1 #

now take the derivative using power rule and chain rule

#dy/dx=-(lnx)^-2(1/x) =-(1)/(x(lnx)^2#

For the second derivative use the quotient rule. keep negative sign out in front so you do not lose track of it

#(d^2y)/dx^2=-[(x(lnx)^2(0)-((lnx)^2(1)+2(lnx)(1/x)x))/((x(lnx)^2)^2]] #

#(d^2y)/dx^2=-[(0-(lnx)^2-2ln(x))/(x^2(lnx)^4)]#

#(d^2y)/dx^2=((lnx)^2+2lnx)/(x^2(lnx)^4) #

#(d^2y)/dx^2=(lnx(lnx+2))/(x^2(lnx)^4) #

#(d^2y)/dx^2=(lnx+2)/(x^2(lnx)^3) #