How do you find the first and second derivative of #(lnx)^2#?
1 Answer
Jan 12, 2018
Explanation:
#"differentiate using the "color(blue)"chain rule"#
#"given "y=f(g(x))" then"#
#dy/dx=f'(g(x)xxg'(x)larrcolor(blue)"chain rule"#
#rArrd/dx((lnx)^2)#
#=2lnx xxd/dx(lnx)=(2lnx)/xlarrcolor(blue)"first derivative"#
#"differentiate first derivative to obtain second derivative"#
#d/dx((2lnx)/x)#
#"differentiate using the "color(blue)"product rule"#
#"given "y=g(x)h(x)" then"#
#dy/dx=g(x)h'(x)+h(x)g'(x)larrcolor(blue)"product rule"#
#"express "(2lnx)/x=2lnx .x^-1#
#g(x)=2lnxrArrg'(x)=2/x#
#h(x)=x^-1rArrh'(x)=-x^-2=-1/x^2#
#rArrd/dx(2lnx .x^-1)#
#=-2lnx . 1/x^2+1/x . 2/x#
#=2/x^2-(2lnx)/x^2larrcolor(blue)"second derivative"#