How do you find the height, h of a mountain using the info given in figure 5.2.9?

1 Answer
Apr 10, 2018

#tan(28)/(1-tan(28))# km# ~~1.135# km

Explanation:

enter image source here

Using the tangent function.

#tan(theta)="opposite"/"adjacent"#

Triangle ABC

#tan(28)=h/y=>h=ytan(28) \ \ \ \ \[1]#

Triangle ADC

#tan(45)=h/(y-1)=h=(y-1)tan(45)#

This means:

#ytan(28)=(y-1)tan(45)#

#(y-1)/y=tan(28)/tan(45)#

#y=1/(1-tan(28)/tan(45))#

Substituting this in #[1]#

#h=tan(28)/(1-tan(28)/tan(45))=(tan(45)tan(28))/(tan(45)-tan(28))#

#tan(45)=1#

#h=tan(28)/(1-tan(28))#

Height of mountain is:

#tan(28)/(1-tan(28))# km# ~~1.135# km