How do you find the indefinite integral of #int (2x)/(x-1)^2#? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer Roy E. Feb 1, 2017 #2 ln |x-1| - 2/(x-1) +c# Explanation: Substitute #u=x-1#. Then #dx=du#, #x=u+1#: #int(2(u+1))/u^2 du# #=2int 1/u du + 2 int (du)/u^2 # #= 2ln|u| -2/u +c# #=2ln|x-1|-2/(x-1)+c# Answer link Related questions How do you integrate #(x+1)/(x^2+2x+1)#? How do you integrate #x/(1+x^4)#? How do you integrate #dx / (2sqrt(x) + 2x#? What is the integration of #1/x#? How do you integrate #(1+x)/(1-x)#? How do you integrate #(2x^3-3x^2+x+1)/(-2x+1)#? How do you find integral of #((secxtanx)/(secx-1))dx#? How do you integrate #(6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3#? How do you integrate #((4x^2-1)^2)/x^3dx #? How do you integrate #(x+3) / sqrt(x) dx#? See all questions in Integrals of Rational Functions Impact of this question 9790 views around the world You can reuse this answer Creative Commons License