How do you find the indefinite integral of #int (cosx)/(7sin(x)+42)dx#?

1 Answer
Oct 26, 2015

#1/7ln(sinx+6)#

Explanation:

Start by moving any constants outside of the integral. In this case we can pull out #1/7#.

#1/7intcosx/(sinx+6)dx#

We can use substitution to simplify the integral.

#u=sinx+6->du=cosx dx#

Plugging #u# and #du# in the integral simplifies to;

#1/7int1/udu#

The integral of #1/x# is #ln|x| +C#.

#1/7ln|u|+C#

Undoing our earlier substitution, we get the solution to our integral.

#1/7ln|sinx+6|+C#