Here,
#I=intsqrt(169x^2-81)/x dx#
#=9intsqrt((169/81)x^2-1)/x dx#
Let,
#13/9x=secu=>13/9dx=secutanudu#
# =>dx=9/13secutanudu and u=sec^-1((13x)/9)#
So,
#I=9intsqrt(sec^2u-1)/(9/13secu)xx9/13secutanudu#
#=9inttanu/secuxxsecutanudu#
#=9inttan^2udu#
#=9int(sec^2u-1)du#
#=9(tanu-u)+c#
#=9(sqrt(sec^2u-1)-u)+c#
Subst. back ,#secu=(13x)/9 and u=sec^-1((13x)/9)#
#I=9[sqrt((169/81x^2-1))-sec^-1((13x)/9)]+c#
#=9[(sqrt(169x^2-81)/9-sec^-1((13x)/9)]+c#
#I=sqrt(169x^2-81)-9sec^-1((13x)/9)+c#