How do you find the indefinite integral of #intdx/(cos(5x)-1)#?

2 Answers
Sep 26, 2015

#1/(5tan((5x)/2))+C#

Explanation:

#t=tan((5x)/2) => (5x)/2=arctant => dx=(2dt)/(5(1+t^2))#

We will find #cos5x# from:

#tan^2(theta/2)=(1-costheta)/(1+costheta)#

#tan^2(theta/2)=(2-1-costheta)/(1+costheta)=2/(1+costheta)-1#

#1+costheta=2/(tan^2(theta/2)+1)#

#costheta=2/(tan^2(theta/2)+1)-1#

#costheta=(2-tan^2(theta/2)-1)/(tan^2(theta/2)+1)#

#costheta=(1-tan^2(theta/2))/(tan^2(theta/2)+1)#

In our case:

#cos5x=(1-t^2)/(1+t^2)#

#I=int dx/(cos5x-1)=int ((2dt)/(5(1+t^2)))/((1-t^2)/(1+t^2)-1)#

#I=int ((2dt)/(5(1+t^2)))/((1-t^2-1-t^2)/(1+t^2))=2/5intdt/(-2t^2)=-1/5intdt/t^2#

#I=1/(5t)+C=1/(5tan((5x)/2))+C#

Refer to explanation

Explanation:

First set #u=5x# hence #du=5dx=>dx=1/5du#

hence the integral becomes

#int 1/5*1/(cosu-1)du=1/5*int 1/(cosu-1)du#

Now we must calculate #int 1/(cosu-1)du# hence we have that

Recall the half-angle identity:

#sin²(u/2) = (1 - cosu)/2#

hence:

#(1 - cosu) = 2sin²(u/2)=> (cosu - 1) = - 2sin²(u/2)#

The integral thus becoming:

#int 1/(- 2sin²(u/2))du =#

#=int - (1/2) 1 /(sin²(u/2)) du =#

#=int - (1/2) csc²(x/2) dx#

that is to say:

#int [- csc²(u/2)] d(u/2) =#

# int (dcot(u/2))(du)#

thus, in conclusion:

#int 1/(cosu - 1)du = cot(u/2) + c#

Hence replacing with #u=5x# we get that

#int 1/(cos5x-1)dx=1/5*cot((5x)/2)+c#