# How do you find the integral of (e^x)(cosx) dx?

##### 2 Answers
Write your answer here...
Start with a one sentence answer
Then teach the underlying concepts
Don't copy without citing sources
preview
?

#### Answer

Write a one sentence answer...

#### Explanation

Explain in detail...

#### Explanation:

I want someone to double check my answer

Describe your changes (optional) 200

53
Gió Share
Jun 22, 2015

#### Answer:

I found: $\frac{{e}^{x} \left(\cos \left(x\right) + \sin \left(x\right)\right)}{2} + c$

#### Explanation:

I tried Integration by Parts (twice) and a little trick...!

Was this helpful? Let the contributor know!
Write your answer here...
Start with a one sentence answer
Then teach the underlying concepts
Don't copy without citing sources
preview
?

#### Answer

Write a one sentence answer...

#### Explanation

Explain in detail...

#### Explanation:

I want someone to double check my answer

Describe your changes (optional) 200

8
Jan 12, 2018

#### Answer:

$\int \setminus {e}^{x} \cos \left(x\right) \setminus \mathrm{dx} = {e}^{x} / 2 \left(\sin \left(x\right) + \cos \left(x\right)\right) + C$

#### Explanation:

Alternatively, we can use a nice little technique called complexifying the integral.

We notice that $\cos \left(x\right)$ is just the same as the real part of ${e}^{i x}$ (by Euler's identity, ${e}^{i \theta} = \cos \left(\theta\right) + i \sin \left(\theta\right)$). We can use this fact to rewrite the integral like so:
$\int \setminus {e}^{x} \cos \left(x\right) \setminus \mathrm{dx} = \int \setminus {e}^{x} \cdot R e \left({e}^{i x}\right) \setminus \mathrm{dx} =$

In terms of complex numbers, ${e}^{x}$ is just some real factor, so it doesn't matter whether we have it outside or inside the Real part function. This means we can put the entire integral inside the Real part function:
$= R e \left(\int \setminus {e}^{x} {e}^{i x} \setminus \mathrm{dx}\right) = R e \left(\int \setminus {e}^{x + i x} \setminus \mathrm{dx}\right) = R e \left(\int \setminus {e}^{\left(i + 1\right) x}\right) \setminus \mathrm{dx} =$

We can do a quite simple u-substitution to evaluate the integral:
$R e \left({e}^{\left(i + 1\right) x} / \left(i + 1\right) + C\right) = R e \left(\frac{{e}^{x} {e}^{i x}}{i + 1}\right) + C =$

$= {e}^{x} \cdot R e \left({e}^{i x} / \left(i + 1\right)\right) + C =$

We can now use Euler's identity again to expand the top. We also multiply by the conjugate of the bottom to simplify the fraction:
$= {e}^{x} \cdot R e \left(\frac{i - 1}{\left(i + 1\right) \left(i - 1\right)} \left(\cos \left(x\right) + i \sin \left(x\right)\right)\right) + C =$

$= {e}^{x} \cdot R e \left(\frac{i - 1}{- 1 - 1} \left(\cos \left(x\right) + i \sin \left(x\right)\right)\right) + C =$

$= {e}^{x} \cdot R e \left(\left(\frac{i}{- 2} - \frac{1}{- 2}\right) \left(\cos \left(x\right) + i \sin \left(x\right)\right)\right) + C =$

$= {e}^{x} \cdot R e \left(- \frac{i}{2} \cos \left(x\right) + \frac{1}{2} \sin \left(x\right) + \frac{1}{2} \cos \left(x\right) + \frac{i}{2} \sin \left(x\right)\right) + C =$

We can now quite easily pick out the real parts:
$= {e}^{x} \left(\frac{1}{2} \sin \left(x\right) + \frac{1}{2} \cos \left(x\right)\right) + C = {e}^{x} / 2 \left(\sin \left(x\right) + \cos \left(x\right)\right) + C$

Was this helpful? Let the contributor know!
##### Just asked! See more
• 18 minutes ago
• 24 minutes ago
• 26 minutes ago
• 28 minutes ago
• 6 minutes ago
• 13 minutes ago
• 13 minutes ago
• 13 minutes ago
• 14 minutes ago
• 17 minutes ago
• 18 minutes ago
• 24 minutes ago
• 26 minutes ago
• 28 minutes ago